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W e  have studied the mean first passage time for the first o f  a set o f  random walkers 
to reach a given lattice point on infinite lattices o f  D d imens ions .  In contrast to the 
well-known result o f  infinite mean first passage times for one random walker in all 
dimensions D, we find finite mean first passage times for certain well-specified sets 
o f  random walkers in all dimensions, except D ~ 2. The number of walkers 
required to achieve a finite mean time for the first walker to reach the given lattice 
point is a function of the lattice dimension D. For D > 4, we f ind that only one 
random walker is required to yield a finite first passage time, provided that this 
random walker reaches the given lattice point with unit probability. We have thus 
found a simple random walk property which "sticks" at D > 4. 

KEY W O R D S :  Random walks; infinite lattices; first passage times. 

1. INTRODUCTION 

It is well known (1 5) that a walker executing a random walk of  zero mean and 
finite variance on a one- or two-dimensional  infinite lattice reaches any 
arbitrary lattice site with certainty. It is also known that the mean time to first 
reach a given site is infinite in both cases. In three and higher dimensions, there 
is a finite probability that a walker may never reach a given lattice site, i.e., 
there is a finite probability o f  escape." 5) 

The above results pertain to the behavior o f  a single random walker. Very 
little is known about the behavior of  a set of  random walkers. In this paper we 
consider the extension of  several wel l -known single-walker results to a set o f  N 
independent random walkers. We concentrate on the subset o f  the N walkers 
that does reach a given lattice site and study the statistical properties o f  the 
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time for the first walker of this subset to reach the site. We find that the 
expected time of this first arrival has a very interesting behavior as a function 
of dimensionality. 

In Section 2 we present some definitions and establish our notation. 
Section 3 contains our results. A summary and physical interpretations of 
these results are given in Section 4. 

2. D E F I N I T I O N S  

Consider a symmetric random walk on an infinite, D-dimensional lattice, 
and let p(]) be the probability that the walker makes a displacement j in one 
step. We define P,(II0) to be the probability that the random walker is at I after 
n steps, given that it was initially at the origin 0. The generating function for 
P,(il0) is defined as (2-4) 

P(z; il0) -= ~ z"P,(ll0) (2.1) 
n = 0  

and is given in D dimensions by 

1 f"  . . . ~  exp(-ll.O) P(z; 110) - (2~) o , ~ ~ -- ~(0) dDO (2.2) 

where the structure factor 2(0) is defined as 

2(0) = ~ "'" ~ p ( j )  exp(ij-0) (2.3) 
Jl Jo 

We further letfn(llO) be the probability that the walker is at l for thefirst time 
after n steps, conditional on the initial position I = O. The generating function 

f (z ;  il0) = ~ z"f.(ll0) (2.4) 
n = O  

is related to P(z; 110) of Eq. (2.1) by (4) 

P(z; 110) - 6~0 
f(z; IL0) - (2.5) 

P ( z ;  olo) 

In particular, the quantity Jl defined by 

7i = ~ f.(llO) 
P(1 ; llO) 6~ 

n=O --  P ( 1 ;  0[0)  ~< t (2 .6 )  

is the probability that a walker starting from the origin will ever reach site 
i (1 ~ 0) or will ever return to the origin (1 = 0). Thus, if N independent 
random walkers start from the origin, then on the average onlyf~N of them 
will subsequently reach site 1. 
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We shall be interested in the time that it takes random walkers chosen 
from among those that do reach 1 to arrive at that site. For this purpose we 
define g,(ll0) as the conditional probability that a walker will step on I at step n 
for the first time, given that it will eventually arrive there. This probability is 
given by 

g.OlO) =L(IIO)/Y; (2.7) 

The probability that a walker that eventually reaches I has not done so by step 
n then is 

G,,(I}0)= ~ g,,,(llO) (2.8) 
r e = n + 1  

The generating function for G,(II0) is 

G(z; 110) = ~ z"G.(l[0) 
n = 0  

1 - ( 1 / J l ) [ P ( z ;  lfO) - 6 ,03 / / ' (~ ;  o lo )  
= (2.9) 

1 - z  

The sth moment of  the first passage time distribution to I for a walker known 
to eventually reach 1 in D dimensions is given by 

(n~(lJ0))r176 -. ~ n~g.(i}0)= ~ [(n + 1) ~ - n~]G.(ll0) (2.10) 
n = 0  n = O  

In particular, the mean time for such a walker to reach ! for the first time is 

(n(ll0)) {z~) = ~ G,(ll0) (2.11) 
n = 0  

Suppose we now observe N independent random walkers starting 
simultaneously from the origin and consider k of them chosen from among 
those that do reach i. The probability that none of  the k has yet reached I by the 
nth step is [G, OrO)] k. The mean time for the first of  the k walkers to reach I then 
is 

(n(ll0))L ~ = n (k ~- q)! q! g"q(llO)G~-q(llO) 
n q 1 

= ~ I-G,(ll0)] k (2.12) 
n = 0  

The term in the brackets in the first part of(2.12) is a sum over the probabilities 
that 1, 2,..., k walkers arrive at ! for the first time on the nth step. 
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In the next section we apply these formulas to r andom walks o f  finite 
variances 

6i 2 ~ L "'" L JiZP(J) 
j D  ~ - o z  j l  ~ - O~ 

in one, two, three, and higher dimensions. For  a nearest neighbor  symmetric 
r andom walk on a cubic D-dimensional  lattice, ai 2 = 1/D. 

3. RESULTS 

3.1. One Dimension 

In  order  to study the convergence o f  the sum for (n(ll0))~ 1) in (2.12), we 
need the asymptot ic  (large-n) behavior  of  G,(II0). This can be obtained f rom 
the analytic behavior  of  G(z; II0) o f  Eq. (2.9) near z = 1 by using a Tauberian 
theorem. It has been shown m that  for a symmetric  walk [p ( j )  = p ( - j ) ] ,  the 
behavior  o f  P(z; 010) near z = 1 is 

e(z; 010) ~ 1/o[-2(1 - z)] ~/2 (3.1) 

In one dimension the probabil i ty that  a r a n d o m  walker eventually reaches any 
given site 1 is unity, i.e., f~ = 1.11'2) Use o f  (3.1) and the result* 4) 

e(z; @0) - P(z; llO) ~ Ill + O(1 - z) (3.2) 

in (2.9) then leads to (4) 

G(z; llO) ~ x /2  Ill 1 (3.3) 
o" (1 - z) ~j2 

near z = 1. The Tauber ian theorem 16) allows us to assert that  ['or large n 

G o + G I + ' " + G , ~  - -  --  (3.4) a 

and since the G, are nonincreasing functions o f  n, we can thus infer that  (~ 

(;f"' G, ~ (3.5) 

F r o m  this result and Eq. (2.12), it therefore follows that  the mean time for the 
first walker to reach ! is finite if at least three r a n d o m  walkers start f rom the 
origin. More  generally, it can easily be seen that  the sth momen t  o f  the first 
passage time distribution for the first o f  the walkers to reach I is finite if there 
are at least 2s + 1 r andom walkers starting f rom the origin. It  can be shown 
that  these conclusions are also valid if each of  the r andom walkers starts at a 
different point. 
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It is difficult to actually evaluate  the mean  time (n(ll0))(3 l) for the first o f  
the three walkers  to arrive at !. However ,  it is easy to obtain  the con t inuum 
analog  o f  this result by start ing f rom the diffusion equat ion 

c3p OZP(x, t) 
~ (x, t) = ~ ~x z (3.6) 

subject to the initial condi t ion P(x, 0) = 6(x). We wish to compute  the mean  
first passage t ime to x = A o f  the earliest o f  k independent  diffusing particles 
to arrive there. Fo r  this purpose  we must  solve (3.6) subject to an absorbing  
bounda ry  condi t ion at x = A, i.e., subject to the condi t ion P(A,  t) = 0. The 
probabi l i ty  G(t) that  a diffusing particle has not  been absorbed  at t ime t is 

G(t) = P(x,  t) dx = 2 F  2~ )1 /2  - 1 (3.7) 
CX3 

where wi thout  loss of  generali ty we have taken A > 0 and where 

i F(x)  = (2~)-  1,~2 e x p ( -  u2/2) du (3.8) 
oo 

It  is easy to see that  asymptot ica l ly  G(t) = O( t -  1/2), SO that  again one needs at 
least three independent  diffusing particles to have a finite average time to 
absorpt ion .  

The con t inuum analog  of  (2.12) is 

T k = Gk(t) dt = CkA2/~  (3.9) 

where T k is the mean  t ime for the first o f  k particles to reach A and where C k 
depends only on k. In part icular ,  C 3 = 0.7576. One can make  a connect ion 
between a cont inuous  diffusion process and a discrete, nearest  neighbor  
r a n d o m  walk by setting a2/2~  =- z, where z is the time between steps and a is 
the lattice spacing. The number  of  steps to absorp t ion  implied by (3.9) is then 
(n(ll0))(k 1) = 2 C J  2, where l - A/a. 

The above  analysis has been restricted to r a n d o m  walks of  finite variance. 
I f  the var iance a o f  the r a n d o m  walk is infinite, the results may  be expected to 
be quite different. While we have not  found it possible to develop a complete ly  
general theory  in this case, one can investigate the behavior  in one dimension 
for r a n d o m  walks in which the single-step transi t ion probabi l i ty  p ( j )  

] j l -p -1  for la rgej .  In Appendix  A we show that  for/~ = 2, three r a n d o m  
walkers  are necessary to ensure finite first arrival time. I f  1 < /~  < 2, then the 
n u m b e r  o f  walkers  needed is k >/~/(/~ - 1) and the number  k is in fact infinite 
a t / ~ =  1. 
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3.2.  T w o  D i m e n s i o n s  

For  a symmetr ic  r a n d o m  walk on a square lattice in two dimensions,  it 
has been shown t41 that,  to leading order  in (1 - z), 

1 
P(z; 010) In(1 - z) (3.10) 

2rccr 1 ~ 

In two dimensions,  as in one dimension,  every r a n d o m  walker  reaches any 
given site I with certainty,  i.e., Jl = 1.  ( 1 ' 2 )  Substi tut ion of  (3.10) in (2.9) and 
use of  the fact that  P(1 ; 010) - P(1 ; ilO) is finite leads to 

27wlo2[P(1 ; 010) - P(1 ; 110)] 
G(z; llO) ~ (3.11) 

(1 - z )  l n [ - 1 / ( 1  - z ) ]  

as z -~ 1. The asympto t ic  form of  G, can then be obta ined in the form t6) 

2;ralo2EP(1; OlO ) - P(1 ; lJ0)] 
G, ~ I n n  (3.12) 

It therefore follows that  in two dimensions the mean  t ime to absorp t ion  is 
infinite regardless of  the number  of  r a n d o m  walkers  tha t  start  f rom the origin. 
This conclusion is a consequence of  the fact that  the sum ~ : o  (ln n) -k 
diverges for  all k. 

3.3.  T h r e e  D i m e n s i o n s  

In three dimensions  it has been established ~7) that  a round  z = 1 the 
following expansion is valid: 

e(z ; l[0) 
- f - a l (1  - z )  :/2 + "'" ( 3 . 1 3 )  

P(z ; 010) 

Here  the factors  Ji and a~ depend on the lattice structure.  The p robab i l i ty / l  
that  a walker ever reaches site I is less than  unity in three dimensions.  ~4'5~ Using 
(3.13) in (2.9), we find that  in the ne ighborhood  of  z = 1, 

G(z ; 110) al 1 fl (1 z) 1/2 (3.14) 

This functional form is precisely the one obta ined  in (3.3) for  the one- 
dimensional  case. We thus again infer that  

o .  - A d , f ~  (3.15) 

where A= is independent  o f  n. The mean  t ime for the first walker  to reach i is 
therefore finite if at least three walkers eventual ly reach 1. 
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3.4. Four D imensions  

In Appendix  B we show that  the following expansion is valid in four  
dimensions 3 : 

e(z  ; 11o) 
- f  + al(1 - z )  In (1 - z )  + "" ( 3 . 1 6 )  

P(z ; 010) 

The funct ionsf i  and a, in (3.16) are independent  o f  (1 - z), andf i  is less than 
unity. <5) Substituting (3.16) in (2.9), we obtain 

G(z; 1[0) = (a, / f )  In(1 - z)  (3.17) 

Use o f  a Tauber ian  theorem <6) on Eq. (3.17) yields the asymptot ic  result 

G1 if" G2 + "'" + G. ~ I n n  (3.18) 

which implies that  

G. ~ 1/n (3.19) 

It thus follows via Eq. (2.12) that  the first walker to reach I will do so in a finite 
time if at least two walkers eventually reach that  site. 

3.5. D imens ions  H igher  Than Four 

In higher dimensions, we show in Appendix  B that  the ratio 
P(z; l[O)/P(z; 010) near z = 1 has the expansion 3 

P(z ; II0) 
P(z; 010~ - f  + a,(1 - z) + ... (3.20) 

wheref i  < 1, ~5) and the specific forms o f f l  and a~ depend on dimension and 
on lattice structure. It then follows f rom (2.9) that  G(1 ; 110) is finite and equal 
to a j f .  Recalling that  

G(t; l t0)  = ~ G.(ll0) = (n(ll0))~l ~ 
n = O  

is the mean time for a single r a n d o m  walker to reach I if it eventually does so, 
we thus conclude that  in more  than four  dimensions every walker that  reaches I 
does so in a finite time. The mean time for any of  these walkers to arrive at ! for 
large lit is shown in Appendix  B to be given by 

1 li2 D > 4 (3.21) 
(n(ll0))~D) - D - 4 i=l ~i 2 '  

3 The analysis in this section is restricted to cases for which the only solution of the equation ).(0) 
= 1 is 0 = 0 with ).(0) defined in (2.3) and - n  <~ 0 i <. n. 
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where we have assumed the lattice to be simple cubic. I f  the variances af = 
are equal in all directions, then 

l 2 

<n(ll0)>~) - (D - 4)0 -2' D > 4 (3.22) 

where l 2 - 1121. For  nearest neighbor  symmetric walks, (3.22) reduces to 

<n010)><l~ = [ D / ( D  - 4)]l 2 (3.23) 

The formulas in Appendix B permit us to extend the above results to 
cont inuous  dimensions. It is easily seen that  the integral (B3) in fact converges 
for D = 4 + e where ~ is an arbitrarily small, positive number.  Thus in all 
dimensions D > 4 only one r andom walker is required to obtain a finite mean 
time for arrival at 1, provided that  the r andom walker reaches that point  with 
unit probabili ty.  This behavior  is reminiscent o f  the proper ty  o f  critical 
exponents,  where for D ~< 4 the critical exponents depend on D, whereas for D 
> 4 the exponents take on their dimension-invariant  classical values (see, e.g., 
Ref. 8). 

4. D I S C U S S I O N  

The results obtained in Section 3 are summarized in Table I. The main 
features to note about  the results are the following: 

1. The number  k o f  walkers that  m u s t  reach site I to ensure that  the first 
one to arrive there does so in a finite time is nonmono ton i c  with dimension D. 
The most  remarkable  aspect o f  this behavior  is that  whereas in one and in 
three or  more  dimensions the number  o f  walkers k is finite, in two dimensions 
the mean time of  first arrival at I is infinite, regardless o f  the number  o f  walkers 
that  arrive there. This is another  example o f  the well-known fact that  D = 2 is 

Table I .  First Passage Time ( n ) ~  ~ as 
a Funct ion of k and D 

D fl k (n)~ D) 

1 1 3 c l l  2 

2 1 - -  ov 

3 <1 3 
4 <1 2 - -  

> 4 < 1 1 cDl 2 
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a "  singular" dimension for a large number of random walk properties, due to 
the ubiquitous appearance of logarithmic factors. To understand this 
property, we note the following. In three or more dimensions, only a fraction 
f~ < 1 of  walkers ever reach site I, and only these are considered in the 
evaluation of the mean first passage time (n)~ D). We conjecture that the 
walkers that do reach site I in three and higher dimensions execute essentially a 
one-dimensional random walk, i.e., a walk confined to a narrow cylinder 
whose axis is defined by the origin and point 1. In two dimensions, however, al l  

walkers reach the site ! and those that sample an infinite two-dimensional 
region before reaching I take an infinitely long time to do so. Since these times 
are included in the first passage time for first arrival at l, it is not possible to 
decrease this time of first arrival by increasing the number of  walkers. 
According to our conjecture, those walkers whose contribution to (n)~ 2) is 
infinite do not contribute to (n)~ ~3) ,  because they never  arrive at !. 

2. The monotonic decrease from three to five dimensions in the number k 
of  walkers necessary for a finite first arrival time can be explained as follows. 
In three and higher dimensions, we have conjectured that a walker that goes 
from the origin to site ! does so along an essentially one-dimensional path with 
only very limited excursions into the other dimensions. These paths can be 
visualized as strictly one-dimensional walks with a finite probability per step 
of remaining at each site. As dimensionality increases, these pausing 
probabilities decrease since any excursion into other dimensions is more likely 
to cause the walker never to reach 1. Hence, as the dimensionality D increases, 
fewer walkers ever reach i (Jl decreases), but those that do arrive at I do so in a 
shorter time. This argument can only explain the trend but not the precise 
values of  k. 

3. The fact that in four and higher dimensions fewer walkers need to 
reach site I than in one dimension in order for the first to arrive at a finite 
expected time indicates a more "directed"  walk in higher dimensions. One 
plausible conjecture to explain this behavior is that in higher dimensions 
walkers that stray too far in the direction opposite to 1, even in an essentially 
one-dimensional walk, never arrive at I. 

4. The arguments given above are reinforced by the fact that for D > 4, 
the mean first passage time (n)~ ~>~) for a walker that does arrive at I is 
proport ional  to 12, the square of  the distance of site ! from the origin. This 
behavior is consistent with that of  one-dimensional walks. The coefficient of  l 2 
decreases with increasing dimensionality in accordance with the arguments in 
points 2 and 3 above. We have not calculated the mean times (n)~ 3) and (n)(2 4) 
in three and four dimensions, respectively, but conjecture that these are also 
proportional  to l 2. 

5. It is easy to show that all  the moments  (nS(IFO))~ D>4) are finite. It 
should be noted that all the moments (nS(l[O))] 1) are also finite for one random 
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walker in a one-dimensional random walk if there is a reflecting barrier at a 
site such that the origin of  the walk is between the reflecting barrier and site l, 
whereas in the absence of such a barrier all these moments are infinite. This 
observation lends credence to our conjecture in point 3 of  the directionality of  
the higher dimensional walks. 

6. It is interesting to note that the smallest number of  walkers with 
certain arrival at I required for finite mean first arrival time does not change 
for dimensions greater than four. This minimum number, k = l, is thus a 
property that "st icks" at D > 4. Many of the previously studied lattice random 
walk properties pertaining to a single walker stick at D > 2. It is not clear 
whether the analogy of  the dimensional dependence of this property with that 
found for critical exponents (see Section 3.5) has a deeper significance or is 
only coincidental. It might be of  interest to pursue this point further. 

7. In view of the fact that the likelihood of two or more walkers being at 
the same point at the same time rapidly decreases with increasing dimension- 
ality, the assumption of independent walkers used in this paper is in fact no 
restriction for large D. 

The analysis in this paper can rather easily be extended to continuous- 
time random walks, ~4'9) provided the mean time between jumps as well as the 
variances of  the single-step transition probabilities are finite. 

We point out that our results are applicable to geometries not explicitly 
mentioned in the calculations. Thus, the mean time for the first o f k  walkers to 
reach a given point in one dimension is equal to the mean time for the first o fk  
walkers to reach a given line (plane) in two (three) dimensions. This can be 
seen by projecting the higher dimensional walks onto the one-dimensional 
one. Similarly, a walk to a line in three dimensions has the same properties as 
that to a point in two dimensions. 

One can also consider the first passage time for a set o f k  random walkers 
on a one-dimensional lattice to reach point | simultaneously. Foldes and 
Gabor  ~1~ have shown that two random walkers eventually reach i simul- 
taneously with certainty, while the probability of  simultaneous arrival is < 1 
for k ~> 3. These results are a consequence of the fact that the problem of the 
simultaneous arrival at 1 of  k walkers in one dimension is equivalent to the 
problem of the return to the origin of  a single walker in k dimensions with 
suitably defined transition probabilities. This correspondence allows us to 
conclude that the mean time for two walkers to first arrive at I simultaneously 
is infinite. 

A P P E N D I X  A. A s y m p t o t i c  Behav ior  of  P(z; II0) for  
O n e - D i m e n s i o n a l  S tab le  Laws 

We will develop the asymptotic theory for a one-dimensional random 
walk of infinite variance in which the single-step transition probabilities are 
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asympto t ic  to a stable law, p ( j ) ~  t j] -~-1.  The structure function 2(0) 
behaves like 

2(0) = 1 - c~101 ~ + o(10l ~) (A.1) 

in a n e i g h b o r h o o d  of  0 = 0. For  z close to 1, P(z; 110) behaves like 

ll0) ~ -1 .fo n cos lO P(z; zr 1 - z + ~0 ~ dO 

1 1 ~o~ cos{/I(1 - z)/c~] 1/~v} 
- zc~ 1/p (1 - z )  1 -  1/'6' J 0  v~+-  i d v  (A.2) 

When this representa t ion is subst i tuted into Eq. (2.9), we are led to the 
p rob lem of  finding an expansion for the integral 

o - cos{ t [ (1  - z)/~]x/Pv} 
I(z) = ~ + -1 dv (A.3) 

valid for  z close to 1. We will first assume that  1 < fl ~ 2. It  is clear that  l ( l )  
= 0. The  behav ior  of  the integral near  z = 1 is de termined by the behavior  of  
the in tegrand for  large v. The  form o f  the in tegrand given in Eq. (A.3) is 
somewhat  inconvenient  for  the evaluat ion of  I(z) near  z = 1. Hence we will 
write 

I(z) = E1 - cos(Ev)] dv 
0 

{1 1 t + [1 - cos(Ev)] Vp+ 1 (v + 1) ~ dv 

where we have set 

(A.4) 

(. = ( I /o~I /P)( I  - -  Z) I/p (A.5) 

The curly bracketed term in the second integrand in (A.4) is O(v-B- ~) for  large 
v, while that  in the first in tegrand is O(v-~). This implies that  the leading te rm 
in the expansion of  I(z)  will come f rom the first integral,  or  

Using the. representa t ion 

fo ~  - c o s ( e v )  
I ( z )  ~ ( v +  1)P dv (A.6) 

1 _ 1 t ~ - l e - s ~ d t  (A.7) 
s~ r ( /~)  
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and interchanging orders o f  

I(z)  

When we combine 

6(z ; 11o ) 

But this implies that  

integration, we find that  

' f :  ;o ~ )  t p- i e t dt [1 -- cos(ev)]e ,t dv 

r fO ~ t~-2e-t 
['(/3) t 2 + (2 dt 

J - 1  fO  u~-2e-a 
1-(/3) u~ + ~  du 

n 1 Ep- i 
2F(/3) Icos(n/3/2)l 

n l ~- 1 
2F(/3)[cos(n/3/2)l ~1 lift ( l  - - Z )  l 1/fl 

this with Eq. (2.9), we find that  

/3 sin(n//3) l ~- 1 1 

2F(/3) Icos(~/3/2)1 ~1-1/a (1 - z) !/~ 

(A.8) 

(A.9) 

1 sin(n//3) l ~ 1 1 

G, 2F(/3)F(1 + 1//3) Icos(~/3/2)1 ~1 - ~/~ n 1 - 1//~ (A.10) 

for large n. For/3  = 2, this agrees with the result obtained in Eq. (3.5). When 
the parameter /3  is less than 2, we see that  the mean time for the first o f  the 
walkers to reach a given point  is finite provided that  k >/3/(/3 - 1) inde- 
pendent  r andom walkers are involved. As /3  approaches  1, the number  o f  
r andom walkers required to assure a finite mean tends to infinity, while for fl 
= 1 the required number  is infinite. 

A P P E N D I X  B. Deta i ls  of  the  Expansion of  P(z; II0) 

To analyze the behavior  o f  P(z; 1[0) near z = 1, we can start f rom the 
formal decomposi t ion 

1-zf_f_ 2(O)c~ (B.1) e(z; ll0) = P(1;II0) ~-2~)~ " ' "  = [1 7 ~  z2(0)] 

It is known that  P(1 ; 110) is finite in three or more  dimensions (2~*) and that 
near 0 = 0, 2(0) can be expanded as 

2(0) ~ 1 - ~ ai20i 2 + 0(02) (B.2) 
i = !  
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By the assumpt ions  made  earlier, any singular behavior  in the integral in Eq. 
(B. 1) can be calculated f rom the behavior  of  the integrand near  0 = 0. Since 
the Jacob ian  of  the t r ans fo rmat ion  to D-dimensional  spherical coordinates  
contains  a factor  0 ~-1,  we see that  in a ne ighborhood  of  the origin the 
integrand in Eq. (B.1) goes as 0 D-5. Hence in five or  more  dimensions the 
integral converges  when z = 1, allowing us to write P(z; 1[0)= P(1; 1[0) 
- ill(1 - z), where 

1 f_ ; 2(O)c~ dDO 
f l , -  (2r0D " ' "  = [-1-~ 2 ~ g  (B.3) 

It therefore follows that  

P( z ; IlO) 

P(z; olo) 
- -  ] i + a l ( 1  - - z ) + " "  (B.4) 

as z ~ 1. Here f~ and a~ depend on dimension and on lattice structure. 
In D = 4 dimensions  the integrand in Eq. (B. 1) is singular at z = 1 and we 

must  analyze it more  closely to determine the type of  singularity. For  
simplicity we restrict ourselves to the case 0 - 2 =  0.227_0-327_ 0-427--0-2 
a l though the more  general case can be dealt  with by essentially the same 
techniques. The  singular behavior  in z is determined by the analytic behavior  
o f  the in tegrand in a ne ighborhood  of  0 = 0. This implies that  the singular 
behavior  of  the integral in Eq. (B.1) can be found f rom 

;f ... f_ )o(O)cos(l.O)d40 2 f f d40 (B.5) 

where 02 = 012 + 022 -~ 032 -~ 042, and the limits o f  the integrals can be 
chosen arbitrari ly,  provided that  they include the origin. For  simplicity we 
choose a finite sphere of  radius p and t rans form to four-dimensional  spherical 
coordinates.  Since the integrand is spherically symmetric ,  we have 

f... ( ~(O)cos(l.O)d40 ~2 f~ OdO 
J O~l = z + ~ 2 0  2) = 2 1 - z + �89 (B.6) 

The integral on the rhs is e lementary,  but  all that  we are really interested in is 
the behavior  of  the integral in the limit z = 1. By evaluat ing the integral we 
find that  this .behavior has the fo rm - (1 /0-  2) l n ( 1 -  z), so that  in four  
dimensions we find 

P(z; l]O)/P(z; 0[0) = f  + al(1 - z) ln(1 - z) + --. (B.7) 

which is also the fo rm when the O'i 2 are not  all equal. 
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We next consider the behavior of G(1;II0) for D > 4 and for 
Y~i li2/ch 2 >> 1. By substituting Eq. (B.4) into (2.9), we find that 

a, d In P(z;  110) (B.8) 
G(1 ; ll0) = f ~ - d z  P ( z ; O l O ) l z =  1 

The last expression can be evaluated in the large-(~ i l~2/~h 2) limit by 
considering the behavior of the integrand in (B.3) near 0 = 0. The simplest 
way to determine the asymptotics is to write 

1 f_ f_ exp(-tl'O) d~,O 
P(z; ll0) ~ (2r0" . "  . 1  - z + 1Eo_i202 

= e -t~ -Z)Fo(t) dt (B.9) 

valid for z close to 1. In this representation, FD(t) is 

1 ]-~ { [ t a j a l }  
Fo( t ) -  ~1 exp - - i l j 0 -  0 2 dO (B.10) 

(2~)*~ ~ -  j = l  

The behavior of P(z; ll0) in the limit z = 1 can be determined from the large-t 
behavior of FD(t) by a well-known Abelian theorem for Laplace trans- 
forms.(11) For large t the limits of integration in Eq. (B.10) can be taken to be 
_+ oo, so that 

1 ' - ~  ai2J Fo(t ) ~ ( 2 g ) v / 2 0 . 1 0 . 2 . . . O _  v tD/2 exp ~ (B.11) 

With this form for Fo(t ), we can evaluate the integral in Eq. (B.9) exactly, 
finding 

( ~ Z )  (D/4)-(1/2) 
P(z; 1[0) ~ KD/2 _ 1(2[L(1 - z ) ]  1/2)  (B.12) 

where Ko(z) is a Bessel function and 

1 D li2 (B. 13) 
L = ~ i=~l 0.i2 

Since we are only interested in the limit z = 1, we must expand the Bessel 
function, using the expansion ~x 2) 

K o ( e ) ~ [ t ( / )  [_ v - e l  ( 2 ) 2 + ' " 1  (B.14) 



Lattice Random Walks for Sets of Random Walkers 25 

valid for small e. When  we substi tute this result into Eq. (B. 12), we find that  

L 
In P(z;  ll0) ~ A (1 - z) + -.. (B.15) 

- 2 

where A is a constant .  This result, together with Eq. (B.8), implies the validity 

of Eq. (3.21). 
One can find the asymptot ic  behavior  of (n(l[O)}~ ~ for D = 3 and  D = 4, 

but  the analysis is somewhat  more involved and  we have not  done so as yet. 

NOTE A D D E D  IN P R O O F  

P. Erd6s and  S. J. Taylor  (Ac ta  M a t h .  Acad .  Sci .  Hung .  11:231 (1960)) 
have discussed certain propert ies of  intersections of  r a n d o m  walk paths whose 
behavior  also " s t i cks"  at D > 4. 
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